1. (a) Assume A is path-connected and $f : A \to Y$ is continuous. Given any two points $y, y' \in f(A)$, let $a, a' \in A$ be such that $y = f(a)$ and $y' = f(a')$. Since A is path-connected, there exists a path from a to a', i.e. a continuous map $h : [t, t'] \to A$ from an interval to A with $h(t) = a$ and $h(t') = a'$. Then $f \circ h : [t, t'] \to Y$ is continuous (as the composition of two continuous maps), and it is a path in $f(A) \subset Y$ connecting $f \circ h(t) = y$ to $f \circ h(t') = y'$. So $f(A)$ is path-connected – and hence all points of $f(A)$ lie in the same path component of Y.

(b) By part (a), if $x, x' \in X$ lie in the same path component $(x \sim x')$ then $f(x), f(x') \in Y$ lie in the same path component $(f(x) \sim f(x'))$. Hence, we can define $\pi_0(f)$ as follows: given $A \in \pi_0(X)$ (an equivalence class, i.e. a path component of X), let $x \in X$ be any point in the path component A, and define $\pi_0(f)(A) \in \pi_0(Y)$ to be equivalence class of $f(x)$, i.e. the path component of Y which contains $f(x)$. The result of (a) implies that this path component does not depend on the choice of $x \in A$. (This is the usual way in which a map which is compatible with an equivalence relation, i.e. maps equivalence classes to equivalence classes, induces a map on the set of equivalence classes: in other terms, denoting by $[x]$ the equivalence class of x, in this case its path component, we have defined $\pi_0(f)$ to map $[x]$ to $[f(x)]$).

(c) We have associated to each topological space X a set $\pi_0(X)$, and to each continuous map $f : X \to Y$ a map $\pi_0(f) : \pi_0(X) \to \pi_0(Y)$. To check that π_0 is a functor, we need to check that $\pi_0(id_X) = id_{\pi_0(X)}$, and $\pi_0(g \circ f) = \pi_0(g) \circ \pi_0(f)$.

Indeed, the identity map $id_X : X \to X$ maps each point of X to itself, and hence each path component of X to itself, so the induced map $\pi_0(id_X) : \pi_0(X) \to \pi_0(X)$ is the identity map. Moreover, assume $f : X \to Y$ and $g : Y \to Z$ are continuous maps. Then $\pi_0(f)$ maps the path component of X which contains a given point x to the path component of Y which contains $f(x)$, and this in turn gets mapped by $\pi_0(g)$ to the path component of Z which contains $g(f(x))$. Meanwhile, $\pi_0(g \circ f)$ maps the path component of X containing x to the path component of Z which contains $g \circ f(x)$. Thus, we have $\pi_0(g \circ f) = \pi_0(g) \circ \pi_0(f)$, and π_0 is a functor from the category of topological spaces (with continuous maps) to the category of sets.

2. (51.2) (a) We need to show that all continuous maps $X \to I = [0, 1]$ are homotopic to each other; we do this by showing that every continuous $f : X \to [0, 1]$ is homotopic to the constant map $f_0 : X \to [0, 1]$ defined by $f_0(x) = 0$ for all $x \in X$. This is indeed the case, and an explicit homotopy is given by $F : X \times I \to I$ defined by $F(x, t) = tf(x)$, which is clearly continuous, and satisfies $F(x, 0) = 0 = f_0(x)$ and $F(x, 1) = f(x)$.

(b) Assuming Y is path-connected, we need to show that any two continuous maps from $I = [0, 1]$ to Y are homotopic. First we show that every continuous map $f : I \to Y$ is homotopic to the constant map $I \to Y$ which maps every element of I to $f(0)$. Indeed, consider $F : I \times I \to Y$ given by $F(s, t) = f(st)$, which is continuous. This is a homotopy between the constant map $F(s, 0) = f(0)$ and $F(s, 1) = f(s)$. (In other terms: we have shown that every path in Y can be homotoped (not fixing the end points) to the constant path at its starting point).

Next, given two points $y, y' \in Y$, let $f, f' : I \to Y$ be the constant maps taking the values $f(s) = y$ and $f'(s) = y'$ for $s \in I$. Since Y is path-connected, there exists a path $g : I \to Y$ such that $g(0) = y$ and $g(1) = y'$. We then consider the map $F : I \times I \to Y$ defined by $F(s, t) = g(t)$, which gives a homotopy between $F(s, 0) = g(0) = y = f(s)$ and $F(s, 1) = g(1) = y' = f'(s)$. Thus, any path is
homotopic to a constant path, and any two constant paths are homotopic to each other (again, not fixing the end points); it follows that any two maps \(I \to Y \) are homotopic.

3. (51.3) (a) The identity map of \(I = [0, 1] \) is homotopic to the constant map \(f_0(s) = 0 \) by (the reverse of) the homotopy \(F(s,t) = st \). (\(F(s,0) = 0 = f_0(s) , F(s,1) = s = \text{id}(s) \)). Similarly for the identity map of \(\mathbb{R} \), using exactly the same formula.

(b) Assume \(X \) is contractible, so that \(\text{id}_X \) is homotopic to a constant map \(f_0 : X \to X \) mapping every point \(x \in X \) to the same point \(x_0 \in X \), via a homotopy \(F : X \times I \to X \), i.e. a continuous map such that \(F(x,0) = f_0(x) = x_0 \) and \(F(x,1) = \text{id}_X(x) = x \) for all \(x \in X \). It then follows that every point of \(X \) is in the same path component as \(x_0 \). Indeed the map \(g : I \to X \) defined by \(g(t) = F(x,t) \) is continuous and determines a path from \(g(0) = x_0 \) to \(g(1) = x \). By concatenating paths that connect given points to \(x_0 \), we see that any two points of \(X \) can be joined by a path, i.e. \(X \) is path-connected.

(c) Assume \(Y \) is contractible, and let \(F : Y \times I \to Y \) be a homotopy such that \(F(y,1) = y \) is the identity map and \(F(y,0) = y_0 \in Y \) is a constant map sending every point to some point \(y_0 \in Y \). Then given any map \(g : X \to Y \), we consider \(G : X \times I \to Y \) defined by \(G(x,t) = F(g(x),t) \). This is continuous, and defines a homotopy between \(g \) and the constant map \(g_0 \) which maps every point of \(X \) to \(y_0 \). Indeed, \(G(x,1) = F(g(x),1) = g(x) \) and \(G(x,0) = F(g(x),0) = y_0 \). It follows that every map from \(X \) to \(Y \) is homotopic to the constant map \(g_0 \), and hence that any two maps from \(X \) to \(Y \) are homotopic to each other.

(d) The argument is essentially the same as in part (b) of the previous problem. Assume \(X \) is contractible, i.e. \(\text{id}_X \) is homotopic to a constant map \(g(x) = x_0 \), by a homotopy \(G : X \times I \to X \), \(G(x,0) = x_0 \), \(G(x,1) = x \) for all \(x \in X \).

First we show that every continuous map \(f : X \to Y \) is homotopic to the constant map \(X \to Y \) which maps every element of \(X \) to \(f(x_0) \). Indeed, define a continuous map \(F : X \times I \to Y \) by \(F(x,t) = f(G(x,t)) \). This is a homotopy between the constant map \(F(x,0) = f(G(x,0)) = f(x_0) \) and \(F(x,1) = f(G(x,1)) = f(x) \).

Next, we show that if \(Y \) is path connected then constant maps (sending every point of \(X \) to the same point of \(Y \)) are homotopic to each other. Indeed, given two points \(y_0, y_1 \in Y \), let \(f_0, f_1 : X \to Y \) be the constant maps taking the values \(f_0(x) = y_0 \) and \(f_1(x) = y_1 \) \(\forall x \in X \). Since \(Y \) is path-connected, there exists a path \(g : I \to Y \) such that \(g(0) = y_0 \) and \(g(1) = y_1 \). We then consider the map \(F : X \times I \to Y \) defined by \(F(x,t) = g(t) \), which gives a homotopy between \(F(x,0) = g(0) = y_0 = f_0(x) \) and \(F(s,1) = g(1) = y_1 = f_1(x) \).

Thus, assuming \(X \) contractible and \(Y \) path-connected, any map \(X \to Y \) is homotopic to a constant map, and any two constant maps are homotopic to each other; it follows that any two maps \(X \to Y \) are homotopic to each other.