Math 131 Homework 4 Solutions

1. (23.5) If X has the discrete topology, and $A \subset X$ consists of more than one point, then given
$x \in A$, $\{x\}$ and $A - \{x\}$ are non-empty disjoint subsets of A, and open (since every subset is open
in the discrete topology), hence form a separation of A: so A is not connected. Thus X is totally
disconnected.

The converse does not hold, and there are many examples of totally disconnected topologies other
than the discrete one. For example \mathbb{R}_f: if $x, y \in A$, $x < y$, then $(A \cap (\infty, y)) \cup (A \cap [y, \infty))$
gives a separation of A: or \mathbb{Q} as a subspace of \mathbb{R} with the standard topology: if $x, y \in A \subset \mathbb{Q},$
$x < y$, then pick $z \in (x, y)$ irrational, and $(A \cap (\infty, z)) \cup (A \cap (z, \infty))$ gives a separation; or even
$\{0\} \cup \{\frac{1}{n}, n \geq 1\}$ as a subspace of \mathbb{R} with the standard topology (this is not discrete since $\{0\}$ is
not open; the argument given for \mathbb{Q} shows that it is totally disconnected).

2. (23.9) (Strongly recommended: draw a picture to follow alongside the argument!) Observe that
$(X \times Y) - (A \times B) = ((X - A) \times Y) \cup ((X \times (Y - B))$. Thus, fixing $a \in X - A$ and $b \in Y - B$, we
adapt the proof of Theorem 23.6 in Munkres, writing $(X \times Y) - (A \times B)$ as a union of subspaces

$$T_x = (X \times \{b\}) \cup (\{x\} \times Y), \quad \forall x \in X - A,$$

$$T_y = (X \times \{y\}) \cup (\{a\} \times Y), \quad \forall y \in Y - B.$$

Since $X \times \{b\}$ and $\{x\} \times Y$ are connected, and have the point (x, b) in common, their union T_x is
connected. Similarly for T'_y. Moreover, the subspaces T_x and T'_y all have the point (a, b) in
common, so their union $(\bigcup_{x \in X - A} T_x) \cup (\bigcup_{y \in Y - B} T'_y)$ is connected. Moreover, $\bigcup_{x \in X - A} T_x =
((X - A) \times Y) \cup (X \times \{b\})$ and $\bigcup_{y \in Y - B} T'_y = (\{a\} \times Y) \cup (X \times (Y - B))$, so their union is indeed
$(X \times Y) - (A \times B)$.

3. (24.1) (a) If we remove any point $x \in (0, 1)$ from $(0, 1)$ then $(0, 1) - \{x\} = (0, x) \cup (x, 1)$ is
disconnected; whereas $(0, 1) - \{1\} = (0, 1)$ is connected. Thus $(0, 1)$ and $(0, 1)$ are not homeomorphic
(if there were such a homeomorphism $f : (0, 1) \to (0, 1)$, then the image of $(0, 1) - \{1\}$ would be
$(0, 1) - \{f(1)\}$, but one is connected and the other isn’t). $(0, 1)$ also fails to be homeomorphic to
$[0, 1]$ for the same reason $(0, 1) - \{1\}$ is connected). Finally, $(0, 1)$ and $[0, 1]$ are not homeomorphic
either because removing two points from $(0, 1)$ always produces a disconnected subset, whereas
removing 0 and 1 from $[0, 1]$ gives a connected subset.

(b) $(0, 1)$ embeds into $[0, 1]$ (by the inclusion map $f(x) = x$), while $[0, 1]$ is homeomorphic to say
$[\frac{1}{3}; \frac{2}{3}] \subset (0, 1)$, hence it embeds into $(0, 1)$ (by the map $g(x) = \frac{1}{3} + \frac{x}{3}$. So $(0, 1)$ and $[0, 1]$ embed into
each other but are not homeomorphic.

(c) The complement of a point in \mathbb{R} is disconnected: $\mathbb{R} - \{x\} = (-\infty, x) \cup (x, \infty)$. However, the
complement of a point in \mathbb{R}^n is connected for $n \geq 2$. This follows e.g. from the result of the
previous exercise, writing $\mathbb{R}^n - \{(x_1, \ldots, x_n)\} = (\mathbb{R}^{n-1} \times \mathbb{R}) - (\{(x_1, \ldots, x_{n-1})\} \times \{x_n\})$ (and using
the connectedness of \mathbb{R}^{n-1}). Hence \mathbb{R}^n is not homeomorphic to \mathbb{R}.

4. (24.2) Assume $f : S^1 \to \mathbb{R}$ is continuous. Let $g : S^1 \to \mathbb{R}$ be the map defined by $g(x) = f(x) - f(-x)$, which is also continuous. If $g(x) = 0$ for all $x \in S^1$ then we are done; otherwise, there exists $x \in S^1$ such that $g(x) \neq 0$. Without loss of generality, we can assume that $g(x) > 0$;
and then $g(-x) = f(-x) - f(x) = -g(x) < 0$. Since S^1 is connected and g is continuous, the
intermediate value theorem implies the existence of $y \in S^1$ such that $g(y) = 0$, i.e. $f(y) = f(-y)$.

1
Alternative solution: if \(f(x) \neq f(-x) \) for all \(x \in S^1 \), then setting \(U = \{ x \in S^1 \mid f(x) < f(-x) \} \) and \(V = \{ x \in S^1 \mid f(x) > f(-x) \} \), then \(U \) and \(V \) are open (by continuity of \(f \)) and disjoint, and \(S^1 = U \cup V \), so by connectedness one of \(U \) and \(V \) must be all of \(S^1 \) and the other must be empty. This is impossible since \(x \in U \leftrightarrow -x \in V \).

5. (24.3) Let \(f : [0,1] \to [0,1] \) be a continuous function, and consider \(g : [0,1] \to \mathbb{R} \) defined by \(g(x) = f(x) - x \), which is also continuous. \(f \) has a fixed point if there exists \(x \in [0,1] \) such that \(g(x) = 0 \). Observe that \(g(0) = f(0) \geq 0 \) and \(g(1) = f(1) - 1 \leq 0 \); if one of these is zero then we are done; otherwise, \(g(0) > 0 \) and \(g(1) < 0 \) so the intermediate value theorem (i.e. the connectedness of \(g([0,1]) \subset \mathbb{R} \)) implies that there exists \(x \in (0,1) \) such that \(g(x) = 0 \), hence \(f(x) = x \).

On the other hand, there exist continuous maps \(f : [0,1] \to [0,1] \) without a fixed point, for example \(f(x) = \frac{1+x}{2} \). Similarly for \((0,1) \) (same example).

6. Assume \((X,d)\) is a connected metric space, and let \(x \in X \). For every \(r > 0 \), \(B_r(x) = \{ y \in X \mid d(x,y) < r \} \) is open by definition, but \(U_r(x) = \{ y \in X \mid d(x,y) > r \} \) is also open. Indeed, if \(y \in U_r(x) \) then, letting \(\epsilon = d(x,y) - r > 0 \), we find that \(B_r(y) \subset U_r(x) \). Now, assuming \(X \) has more than one point, let \(y \neq x \), and let \(a = d(x,y) > 0 \). We claim that, for each \(r \in (0,a) \) there exists a point of \(X \) whose distance to \(x \) is equal to \(r \). Indeed, if no point lies at distance \(r \) from \(x \) then \(X = B_r(x) \cup U_r(x) \), where \(B_r(x) \) and \(U_r(x) \) are disjoint (obvious), open (see above), and non-empty \((x \in B_r(x) \text{ and } y \in U_r(x))\), contradicting the connectedness of \(X \). So for all \(r \in (0,a) \) we can find some \(z(r) \in X \) with \(d(x,z(r)) = r \). Since \((0,a) \subset \mathbb{R} \) is uncountable this shows \(X \) is uncountable.

Alternatively: the function \(\delta : X \to \mathbb{R} \) defined by \(\delta(y) = d(x,y) \) is continuous \((d(y_1,y_2) < \epsilon \Rightarrow |\delta(y_1) - \delta(y_2)| < \epsilon \) by the triangle inequality\), so \(\delta(X) \subset \mathbb{R} \) is connected. Picking some \(y \neq x \), let \(a = \delta(y) > 0 \), while \(\delta(x) = 0 \). The intermediate value theorem then implies that \([0,a] \subset \delta(X)\), and this in turn implies that \(X \) is uncountable (else \(\delta(X) \) would be finite or countable).

7. (26.2) (a) Let \(X \subset \mathbb{R} \) with the finite complement topology (which is also the finite complement topology on \(X \)). We assume \(X \neq \emptyset \) (otherwise the statement is obvious). Let \((U_i)_{i \in I}\) be an open cover of \(X \), and pick \(i_0 \in I \) such that \(U_{i_0} \neq \emptyset \). Then \(X - U_{i_0} \) is a finite set: \(X - U_{i_0} = \{ x_1, \ldots, x_n \} \) for some \(n \in \mathbb{N} \) and some \(x_1, \ldots, x_n \in X \). For each \(k = 1, \ldots, n \), \(x_k \in \bigcup U_i \), so there exists \(i_k \in I \) such that \(x_k \in U_{i_k} \). We then find that \(U_{i_0} \cup U_{i_1} \cup \cdots \cup U_{i_n} \) is a finite subcover of the given open cover. This proves that \(X \) is compact.

(b) Consider \([0,1]\) with the countable complement topology, i.e. non-empty open sets are subsets whose complement is finite or countable. For each \(q \in [0,1] \cap \mathbb{Q} \), let \(U_q = ([0,1] - \mathbb{Q}) \cup \{ q \} \) be the subset consisting of all the irrationals and the single rational \(q \). Since rationals are countable, \(U_q \) has countable complement hence is open in this topology. Moreover, the \(U_q \) cover \([0,1]\), since they contain all the irrationals and every rational number \(q \) is in one of these open sets, namely \(U_q \). However, since \(q \) is not in any of the other subsets \(U_{q'} \), \(q' \neq q \), there are no strict subcovers of the collection \(\{U_q\}_{q \in [0,1] \cap \mathbb{Q}} \). Indeed, if we omit some \(U_q \) then the rational \(q \) is no longer in the union of the remaining open sets of the collection. Thus this open cover has no finite subcover, and \([0,1] \) is not compact.

8. (26.7) (Strongly recommended: draw a picture to follow alongside the argument!) Assume \(Y \) is compact, and let \(A \subset X \times Y \) be a closed subset in the product topology. We need to show that \(\pi_1(A) = \{ x \in X \mid \exists y \in Y, (x,y) \in A \} \) is closed in \(X \), i.e. that its complement is open. Let
$x \in X - \pi_1(A)$, i.e. $\exists y \in Y$ such that $(x, y) \in A$. For each $y \in Y$, (x, y) is in the complement of A, which is open in $X \times Y$, so there exist neighborhoods U_y of x in X and V_y of y in Y such that $U_y \times V_y$ is disjoint from A. The open sets $(V_y)_{y \in Y}$ form an open cover of the compact space Y, so there exist $y_1, \ldots, y_n \in Y$ such that $Y = V_{y_1} \cup \cdots \cup V_{y_n}$. Let $U = U_{y_1} \cap \cdots \cap U_{y_n}$, which is a neighborhood of x in X. Then $U \times Y = (U \times V_{y_1}) \cup \cdots \cup (U \times V_{y_n}) \subset (U_{y_1} \times V_{y_1}) \cup \cdots \cup (U_{y_n} \times V_{y_n}) \subset (X \times Y) - A$. Thus A contains no points of the form (x', y') for $x' \in U$, hence $U \subset X - \pi_1(A)$. This shows that $X - \pi_1(A)$ is open, hence $\pi_1(A)$ is closed.

9. (26.8) If $f : X \to Y$ is continuous and Y is Hausdorff then the graph $G_f = \{(x, f(x))\} \subset X \times Y$ is closed. Indeed, if $(x, y) \notin G_f$, then $f(x) \neq y$, so there exist disjoint neighborhoods $V \ni f(x)$ and $V' \ni y$ in Y. Now, f is continuous so $U = f^{-1}(V) \subset X$ is open, and $x \in U$ since $f(x) \in V$. We now observe that the neighborhood $U \times V'$ of (x, y) is disjoint from G_f, since if $(x', y') \in U \times V'$ then $f(x') \in V$ can’t be equal to $y' \in V'$. This implies that the complement of G_f is open, hence G_f is closed.

Conversely, assume G_f is closed, and assume Y is compact. We follow the hint in Munkres. Let $V \subset Y$ be open, and observe that $Y - V$ is closed in Y, hence compact. Thus, by the previous exercise, the projection $\pi_1 : X \times (Y - V) \to X$ is a closed map. Applying this to the intersection of G_f with $X \times (Y - V)$, which is closed in the subspace topology, we find that $\pi_1(G_f \cap (X \times (Y - V)))$ is closed in X. On the other hand,

$$\pi_1(G_f \cap (X \times (Y - V))) = \{x \in X \mid \exists y \in Y - V \text{ such that } (x, y) \in G_f\}$$

$$= \{x \in X \mid f(x) \in Y - V\} = f^{-1}(Y - V) = X - f^{-1}(V),$$

so we conclude that $f^{-1}(V)$ is open. Hence f is continuous.

The result fails if Y is not compact: for example the map $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 1/x$ for $x \neq 0$ and $f(0) = 0$ is not continuous for the standard topology (e.g. $f^{-1}((-1, 1)) = (-\infty, -1) \cup \{0\} \cup (1, \infty)$ is not open), but its graph $G_f = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\} \cup \{(0, 0)\}$ is closed since it is the union of two closed sets (the hyperbola $\{(x, y) \mid xy = 1\}$ and the single point $\{(0, 0)\}$).

10. $X = \mathbb{R}^n \cup \{\infty\}$ is Hausdorff: given distinct points $x, y \in X$, if $x, y \in \mathbb{R}^n$ then they have disjoint neighborhoods within \mathbb{R}^n (open balls in \mathbb{R}^n of radius less than $|x - y|/2$); whereas if say $y = \infty$ and $x \in \mathbb{R}^n$ has norm $|x| = r$, then the neighborhoods $B_1(x) \subset \mathbb{R}^n$ of x and $U_{r+1} = \{\infty\} \cup \{z \in \mathbb{R}^n \mid |z| > r + 1\}$ of ∞ are disjoint (since $z \in B_1(x) \Rightarrow |z| < |x| + 1$).

Let $(V_i)_{i \in I}$ be an open cover of X. There is some $i_0 \in I$ such that $\infty \in V_{i_0}$; V_{i_0} thus contains a basis neighborhood of ∞ of the form $U_r = \{\infty\} \cup \{x \in \mathbb{R}^n \mid |x| > r\}$ for some $r > 0$. In particular, $X - V_{i_0} \subset A = \{x \in \mathbb{R}^n \mid |x| \leq r\}$, which is closed and bounded in \mathbb{R}^n hence compact (Theorem 27.3). Since the open sets $V_i \cap A$ form an open cover of A and A is compact, there exists a finite subcover, i.e. there exist $i_1, \ldots, i_n \in I$ such that $V_{i_1} \cup \cdots \cup V_{i_n} \supset A$. Then $V_{i_0} \cup V_{i_1} \cup \cdots \cup V_{i_n} \supset V_{i_0} \cup A = X$, i.e. the given open cover of X admits a finite subcover. Hence X is compact.