Recall: Def. \(x \in X \) is a limit point of \(A \subseteq X \) if, for every neighborhood \(U \) of \(x \),
\[U \cap (A - \{x\}) \neq \emptyset. \]

Then \(\overline{A} = \bigcap_{F \supseteq A, F \text{ closed}} F \)

Corollary: \(x \in \overline{A} \) iff \(\forall U \) neighborhood of \(x \), \(U \cap A \neq \emptyset \).

Limits of sequences

\(X \) top space: Then we say a sequence \(x_1, x_2, \ldots \) converges to \(x \) if, for every neighborhood \(U \) of \(x \), \(\exists N \) st. \(n \geq N \implies x_n \in U \).

(Enough to check this for a basis of neighborhoods of \(x \), i.e., a family of neighborhoods s.t. every neighborhood of \(x \) contains one of them.)

E.g. in a metric space, balls \(B_r(x), r > 0 \), or even the balls \(B_{1/n}(x) \).

\(\implies \) taking base, recover usual notion:
\(x_n \to x \) if \(\forall r > 0 \exists N \) s.t. \(n \geq N \implies x_n \in B_r(x) \).

Fact: if \(\exists \) sequence \(x_n \) in \(A \) with \(x_n \to x \) \(\forall n \) and \(x_n \to x \), then \(x \) is a limit point of \(A \).

(in fact: \(\forall U \) neighborhood of \(x \), \(U \cap (A - \{x\}) \exists x_n \) for all sufficiently large \(n \) !)

Conversely, in a metric space, if \(x \) is a limit point of \(A \subseteq X \) then \(\forall n > 0 \exists x_n \in B_{1/n}(x) \cap A \) with \(x_n \to x \).

Hence \(x \) is the limit of a sequence \(\{x_n\} \) in \(A \) with \(x_n \to x \).

This holds more generally in spaces where points have countable bases of neighborhoods \(U, U_2, \ldots \) (i.e., \(\forall x \exists \text{basis } U_1, U_2, \ldots \text{ s.t. } \forall x \exists U_x \cap U, x \in U_x \subseteq U \)), but not in arbitrary topological spaces!

Example: Let \(X = \mathbb{R} \) with topology \(\mathcal{T} = \{ U \subseteq \mathbb{R} / U = \emptyset \text{ or } \mathbb{R} - U \text{ is countable} \} \).
(check this satisfies the axioms). Let \(A = (0, 1) \). Then \(\overline{A} = \mathbb{R} \)

(Indeed: closed \(\implies \) countable or all \(\mathbb{R} \), so smallest closed set \(\supseteq (0, 1) \) is \(\mathbb{R} \).)

Hence \(2 \) is a limit point of \(A \)!

But there is no sequence \(a_n \in A \) s.t. \(a_n \to 2 \), since the complement of any sequence in \(A \) is open, hence a neighborhood of 2 containing no \(a_n \)'s.

(in fact for a seq. to converge in this topology it must be constant after finitely many terms).
Hausdorff spaces:

Recall: in a metric space, a sequence converges to at most one limit.

This is not true in an arbitrary topological space!

Ex: \(X = \mathbb{R} \) with finite complement topology (open = \(\emptyset \) and \(\mathbb{R} - \{ \text{finite sets} \} \)).

Let \(a_1, a_2, \ldots \) be a sequence in \(X \) with all \(a_i \) distinct.

Then \(\forall x \in X \), every neighborhood \(U \ni x \) has finite complement, hence
contains all but finitely many of the \(a_i \), hence \(\exists N \) s.t. \(a_n \notin U \) \(\forall n > N \).

Thus the sequence converges to every point of \(X \)!

To avoid such pathological behavior:

Def: A top-space is **Hausdorff** if \(\forall x_1 \neq x_2 \in X \), \(\exists \) neighborhoods \(U_1 \ni x_1, U_2 \ni x_2 \)

s.t. \(U_1 \cap U_2 = \emptyset \).

Ex: 1) any metric space is Hausdorff:

\[
\begin{align*}
\text{given } x_1 \neq x_2, & \text{ choose } 0 < \varepsilon < \frac{1}{2} d(x_1, x_2) \\
\text{then } U_i = B_{\varepsilon}(x_i) & \text{ disjoint neighborhoods of } x_i.
\end{align*}
\]

2) the finite complement topology on \(\mathbb{R} \) is not Hausdorff, since any two non-empty open sets intersect (in infinitely many points).

3) the discrete topology is always Hausdorff (\(U_i = \{x_i\} \) disjoint neighborhoods of \(x_i \))

Thm: if \(X \) is Hausdorff then every sequence in \(X \) converges to at most one limit.

Proof: assume \(x_1, x_2, \ldots \) converge to \(x \in X \), and let \(y \neq x \).

Choose \(U_x \ni x \), \(U_y \ni y \) disjoint neighborhoods.

Since \(x_n \to x \), \(\exists N \) s.t. \(\forall n > N \) \(x_n \notin U_y \). Hence \(x_n \notin U_y \) for \(n > N \),
so the sequence doesn’t converge to \(y \). \(\Box \)

Remark: there are several flavors of separation axioms, beside the notion of Hausdorff-ness:

- say \(X \) is \(T_0 \) if \(\forall x \neq y \), there exists an open set containing one but not the other
- say \(X \) is \(T_1 \) if \(\forall x \neq y \), \(\exists \) neighborhood \(U \ni y \) which doesn’t contain \(x \).

(\(\Leftrightarrow \forall x, \{x\} \text{ is closed} \)) (indeed; consider \(\mathbb{R} - \{x\} \text{ vs. } U \ni x \).)

- say \(X \) is \(T_2 \) if \(\forall x \neq y \), \(\exists U_x, U_y \ni x, y \) open and disjoint.

(\(\Leftrightarrow \forall x, \text{ \{closed\} } \Rightarrow \text{ \{compact\} } \)) (indeed; consider \(\text{compact-ness vs. separation} \)).
1. T_2: Hausdorff. $\forall x \neq y$. \exists neighborhoods $U \ni x$, $V \ni y$ s.t. $U \cap V = \emptyset$.

2. T_3: regular: $T_1 + \forall x \in X$, $\forall A$ closed s.t. $x \notin A$, \exists open $U \ni x$, $V \supseteq A$, $U \cap V = \emptyset$.

3. T_4: normal: $T_1 + \forall A, B$ $\subseteq X$ closed & disjoint, \exists open $U \supseteq A$, $V \supseteq B$, $U \cap V = \emptyset$.

Ex: R with the finite complement topology is T_1 ($\mathbb{R} - \{x\}$ open $\forall x$) but not Hausdorff (as seen above).

Ex: R_e is normal; $R_e < R_{e}$ is regular but not normal. (Munkres end of §31).

The motivation for studying normal & regular spaces comes from the question of metrizability, i.e. which topologies are actually metric space topologies.

Then: || Every metric space is normal

PF: let $A, B \subseteq X$ closed & disjoint.

- $\forall a \in A \exists \varepsilon_a > 0$ s.t. $B(a, \varepsilon_a) \subseteq X - B$.
- $\forall b \in B \exists \varepsilon_b > 0$ s.t. $B(b, \varepsilon_b) \subseteq X - A$.

Observe: $d(a, b) \geq \max(\frac{\varepsilon_a}{2}, \frac{\varepsilon_b}{2}) = \frac{\varepsilon_a + \varepsilon_b}{2}$ $\forall a \in A \forall b \in B$, hence $B(a, \frac{\varepsilon_a}{2}) \cap B(b, \frac{\varepsilon_b}{2}) = \emptyset$.

This implies: $U = \bigcup_{a \in A} B(a, \frac{\varepsilon_a}{2})$ and $V = \bigcup_{b \in B} B(b, \frac{\varepsilon_b}{2})$ are disjoint ($\&$ clearly open, contain $A \& B$). □

Urysohn metrization theorem: || Every regular space with a countable basis is metrizable.

(i.e. \exists metric inducing the topology).

Topologies on products (§13)

Given an index set I, and topological spaces $X_i \ni i \in I$, consider the product set $X = \prod_{i \in I} X_i = \{ (a_i)_{i \in I} \mid a_i \in X_i \; \forall i \in I \}$

Natural topology on X?

First idea: the box topology

Def: the box topology on $\prod_{i \in I} X_i$ has basis $\{ \prod_{i \in I} U_i \mid U_i \subseteq X_i \text{ open} \forall i \}$

This is a basis: box \cap box = box, since $(\prod_i U_i) \cap (\prod_i V_i) = \prod_i (U_i \cap V_i))$
This is a natural definition, but has unexpected properties.

Example: consider the diagonal map \(\Delta : \mathbb{R} \to \mathbb{R}^\infty \Rightarrow \mathbb{R}^\omega \) where \(\Delta(x) = (x, x, x, \ldots) \)

For finite products, with product topology, \(\Delta : \mathbb{R} \to \mathbb{R}^n \) is continuous (in fact, an embedding).

But, giving \(\mathbb{R}^\infty \) the box topology, \(\Delta \) is not continuous!!

Indeed, let \(U = (-1, 1) \times (-\frac{1}{2}, \frac{1}{2}) \times (-\frac{1}{3}, \frac{1}{3}) \times \cdots \) open in box topology.

\[\Delta^{-1}(U) = \bigcap_{n=1}^\infty (-\frac{1}{n}, \frac{1}{n}) = \{0\} \] not open in \(\mathbb{R}^n \).

Better: the product topology

Define the product topology on \(X = \prod X_i \) has basis:

\[\{ \prod U_i \mid U_i \subset X_i \text{ open, and } U_i = X_i \text{ for all but finitely many } i \} \]

(check this is a basis!)

(This is the same as the box topology if \(I \) is finite; for infinite \(I \), this is coarser than the box topology)

Unless otherwise specified, the product topology is the one we'll use on \(\prod X_i \).

Theorem: \(f : \mathbb{Z} \to X = \prod X_i \) is continuous \(\iff \) each component \(f_i : \mathbb{Z} \to X_i \) is continuous.

Proof:

- **If** \(f \) is continuous. The component maps are \(f_i = p_i \circ f \) where \(p_i : X \to X_i \) is the projection to the \(i \)th factor.
 - \(p_i \) is continuous since \(U \subset X_i \text{ open} \Rightarrow p_i^{-1}(U) = \text{product of } \{X_j \text{ for } j \neq i \text{ open} \} \)
 - Hence \(f_i = p_i \circ f \) is continuous (composition of 2 continuous functions)

- **Conversely,** assume all \(f_i \) are continuous, and consider basis element \(\prod U_i \subset X \) where \(U_i = X_i \text{ for all but finitely many } i \).
 - Then \(f^{-1}(\prod U_i) = \{ z \in \mathbb{Z} \mid (f_i(z)), i \in I \in \prod U_i \} = \bigcap_{i \in I} f_i^{-1}(U_i) \)
 - Each \(f_i^{-1}(U_i) \subset \mathbb{Z} \) is open, and all but finitely many are \(f_i(X_i) = \mathbb{Z} \), so can be omitted from the intersection.

So \(f^{-1}(\prod U_i) \) is the intersection of finitely many open sets in \(\mathbb{Z} \), hence open. \(\Box \)