Def. A function \(f: X \to Y \) between topological spaces is continuous if
\(\forall U \subseteq Y \text{ open, } f^{-1}(U) \subseteq X \text{ is open.} \)

(Various examples seen last time)

* It suffices to check continuity on elements of a basis!

Prop. \(f: X \to Y \) is continuous iff \(f^{-1}(B) \subseteq X \) is open for all \(B \) in a basis for the topology on \(Y \).

Prof. \(f^{-1}(B) \) open \(\forall B \subseteq \text{basis} \) is obviously necessary for continuity of \(f \),

since every basis element is open in \(Y \).

* Every open \(U \subseteq Y \) can be written as \(U = \bigcup_{i \in I} B_i \), \(B_i \subseteq \text{basis} \). Since

\[f^{-1}(U) = \bigcup_{i \in I} f^{-1}(B_i), \]

if \(f^{-1}(B_i) \) are all open in \(X \) then so is \(f^{-1}(U) \). \(\Box \)

Ex: \(X \) any top. space, \(Y \) metric space, then to check continuity of \(f: X \to Y \) it is

enough to check that \(f^{-1}(B_r(y)) \) is open \(\forall y \in Y, \forall r > 0. \)

Properties of continuous functions: for any topological space:

Thm: 1) constant functions \(f: X \to Y, f(x) = y_0, \forall x \in X \) for some fixed \(y_0 \in Y \)

are continuous.

2) if \(A \subseteq X \) is given the subspace topology, then the inclusion \(i: A \to X \)

is continuous.

3) if \(f: X \to Y \) and \(g: Y \to Z \) are continuous, then \(g \circ f: X \to Z \) is continuous.

4) if \(X = \bigcup_{\alpha} U_\alpha \) with \(U_\alpha \) open ("open cover of \(X \)) , and

\(f: X \to Y \) a function such that \(f|_{U_\alpha}: U_\alpha \to Y \) is continuous for all \(\alpha \),

then \(f \) is continuous with subspace topology.

PF: 1) if \(f \) is a constant function then \(\forall U \subseteq Y \), \(f^{-1}(U) = \left\{ x \mid y_0 \in U \right\} \) always open.

2) \(\forall U \subseteq X \text{ open, } f^{-1}(U) = U \cap A \text{ is open in } A. \)

3) \(\forall U \subseteq Z, (g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \) \(\left(g(f(x)) \in U \iff f(x) \in g^{-1}(U) \iff x \in f^{-1}(g^{-1}(U)) \right) \)

\(U \text{ open in } Z \Rightarrow g^{-1}(U) \text{ open in } Y \Rightarrow f^{-1}(g^{-1}(U)) \text{ open in } X. \)
4) \(\forall V \subseteq Y \text{ open}, \quad (f(U_\alpha))^{-1}(V) = f^{-1}(V) \cap U_\alpha, \) so \(f^{-1}(V) = \bigcup_\alpha (f(U_\alpha))^{-1}(V). \)

\((f(U_\alpha))^{-1}(V) \) is open in \(U_\alpha, \) so it's the intersection of \(U_\alpha \) with an open subset of \(X, \) hence (since \(U_\alpha \) also open) it's an open subset of \(X. \)

\(f^{-1}(V) \) is therefore a union of open sets in \(X, \) hence open. \(\Box \)

Homeomorphisms: two topological space \(X \) and \(Y \) are "homeomorphic" if they are topologically the same - namely, if there exists a bijection \(f: X \to Y \) s.t. \(U \) is open \(\iff f(U) \) is open.

Def: A bijection \(f: X \to Y \) is a **homeomorphism** if \(f \) and \(f^{-1} \) are both continuous.

- Say \(X \) and \(Y \) are **homeomorphic** if there exists a homeomorphism between them.

Ex: we've seen that a continuous bijection need not be a homeomorphism.

- \(f = \text{id}: \mathbb{R} \to \mathbb{R} \) is continuous \((a,b) \subset \mathbb{R} \text{ open} \) but \(f' \) isn't \(\left([a,b] \subset \mathbb{R}, \text{Id} \not\text{not open} \right). \)

Ex: \(X = \{0\} \cup \{\frac{1}{2}, \frac{1}{3}, \ldots\} \) with topology induced by metric of \(\mathbb{R} \)

\(N = \{0, 1, 2, 3, \ldots\} \) with discrete topology

Define \(f: N \to X \) by \(f(0) = 0, f(n) = \frac{1}{n} \) for \(n \geq 1. \)

This is continuous (in fact any function from discrete top. is continuous since all subsets are open) and bijective, but not a homeomorphism

(\(\{0\} \subset X \) is not open, since any open ball around 0 contain \(\frac{1}{n} \) for large \(n \)).

\(f \) is a homeomorphism since every subset of \(N \) is open whereas not true for \(X. \)

- A metric space is **bounded** if \(\sup \{d(x, y) \mid x, y \in X \} < \infty. \)

This is not a topological property! For example:

\(f: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}, \ f(x) = \tan x \)

This is a continuous bijection, and \(f^{-1} = \arctan \) is continuous as well, so \((-\frac{\pi}{2}, \frac{\pi}{2}) \) is homeomorphic to \(\mathbb{R}. \) (or in fact, any open interval).

Def: \(f: Y \to X \) continuous injective map, then \(f \) is an **embedding** if the map \(Y \to f(Y) \) is a homeomorphism (with subspace topology on \(f(Y) \subset X). \)

Ex: \(f: N \to \mathbb{R}, \ f(0) = 0, f(n) = \frac{1}{n} \) for \(n \geq 1 \) is not an embedding.

- \(Y \subset X \) with subspace topology, the inclusion \(i: Y \to X \) is an embedding.
Beware: in differential topology the notion of embedding is different, because one considers spaces not just topologically but with a smooth structure.

\[\mathbb{R} \rightarrow \mathbb{R}^2 \quad \alpha \mapsto (\alpha, \alpha^2) \quad \text{is a topological embedding but not a smooth embedding.} \]

Closed sets & limit points (Munkres §17)

Recall: a subset \(A \) of a topological space \(X \) is closed if \(X \setminus A \) is open.

(sets can be both closed & open, e.g. \(\emptyset \) and \(X \), or neither)

Def: \(A \subset X \) any subset

1) the closure of \(A \), \(\bar{A} \) = smallest closed set containing \(A \)

\[\bar{A} = \bigcap \{ F \mid F \supseteq A, F \text{ closed} \} \]

(closed since it's an intersection of closed sets)

2) the interior of \(A \), \(\text{int}(A) \) = largest open set contained in \(A \)

\[\text{int}(A) = \bigcup_{U \subset A, U \text{ open}} U \]

3) the boundary of \(A \) is \(\partial A = \bar{A} \setminus \text{int}(A) \) (or \(\text{bd}(A) \))

Ex: \(A = [0,1) \subset \mathbb{R} \Rightarrow \bar{A} = [0,1], \text{int}(A) = (0,1), \partial A = \{0,1\} \)

Rmk: \(A \) is closed iff \(\bar{A} = A \), open iff \(\text{int}(A) = A \).

Def: say \(A \) is dense if \(\bar{A} = X \).

Ex: \(Q \subset \mathbb{R} \) is dense in \(\mathbb{R} \).

Indeed, assume not, then \(\exists x \in \mathbb{R} \setminus Q \) which is open

\[\Rightarrow \exists a < b \text{ s.t. } x \in (a, b) \subset \mathbb{R} \setminus Q \subset \mathbb{R} \setminus Q. \text{ But } \exists \text{rationals in } (a, b). \]

Def: \(U \subset X \) is a neighborhood of \(x \in X \) if \(x \in U \) and \(U \) is open.

Def: \(x \in X \) is a limit point of \(A \subset X \) if, for every neighborhood \(U \) of \(x \), \(U \cap (A \setminus \{x\}) \neq \emptyset \).

\(\times \) is not a limit point

Ex: in \(\mathbb{R} \setminus \{0\} \), \(1 \) is a limit point of \((0,1) \) and of \([0,1] \).

\(1 \) is not a limit point of \(\{\frac{1}{n}, n \geq 1\} \cup \{0\} \), but \(0 \) is.

\[\mathbb{R} \setminus \{0\} \]

\[\{\frac{1}{n}, n \geq 1\} \cup \{0\} \]
Then, \(\overline{A} = A \cup \{ \text{limit points of } A \} \).

Pf:
1. Suppose \(x \notin A \) and \(x \) isn't a limit point. Then \(\exists U \) neighborhood of \(x \) such that \(U \cap A = \emptyset \).
 Hence \(A \cap X - U \), which is closed \(\Rightarrow \overline{A} = \bigcap \{ \text{closed sets containing } A \} \subseteq X - U \).
 So \(U \cap \overline{A} = \emptyset \), hence \(x \notin \overline{A} \).
2. Conversely, suppose \(x \in \overline{A} \). Then \(U = X - \overline{A} \) is an open neighborhood of \(x \) disjoint from \(A \), so \(x \) is not a limit point of \(A \) (nor in \(A \)). \(\square \).

Corollary: \(x \in \overline{A} \iff \forall U \) neighborhood of \(x \), \(U \cap A \neq \emptyset \). (Proof: consider separately cases \(x \in A \), \(x \notin A \).)