We'll now explore neat topological applications of \(\pi_1(S^1) = \mathbb{Z} \). Consider two-dimensional analogues of the intermediate value theorem, specifically:

1. every continuous map \(f: I \to I \) has a fixed point (\(\exists x \in I \) st. \(f(x) = x \))

 \[\text{Proof: let } g(x) = f(x) - x, \text{ apply intermediate value theorem to } g \ (g(0) \geq 0, g(1) \leq 0). \]

2. if \(f: S^1 \to \mathbb{R} \) is continuous, then \(\exists x \in S^1 \) st. \(f(x) = f(-x) \).

 (This was an HW4, proof considers \(g(x) = f(x) - f(-x) \) & connectedness of \(S^1 \)).

1. **The Brouwer fixed point theorem:**

 Let \(B^n \) denote the closed ball of radius \(1 \) in \(\mathbb{R}^n \), with boundary the unit sphere \(S^{n-1} \).

 Recall that if \(A \subset X \), a retraction \(r: X \to A \) is a continuous map s.t. \(r(a) = a \forall a \in A \).

 Then: there is no retraction of \(B^2 \) onto \(S^1 \).

 \[\text{Proof: if } r: B^2 \to S^1 \text{ is a retraction, then given any loop } f \text{ in } S^1, f \text{ is also a loop in } B^2, \text{ which is convex } \subset \mathbb{R}^2, \text{ so } \exists \text{ straight line homotopy } F: I \times I \to B^2 \text{ from } f \text{ to constant loop. Then } r \\
 \text{of } F: I \times I \to S^1 \text{ gives a homotopy in } S^1 \text{ from } f \text{ to constant loop. This contradicts } \pi_1(S^1) \\neq 1. \]

 (see also HW).

 [with more alg. top., similarly \(\not\exists \text{ retraction } B^n \to S^{n-1} \forall n \)].

2. **Brouwer fixed point theorem:**

 If \(f: B^2 \to B^2 \) is continuous, then \(\exists x \in B^2 \) st. \(f(x) = x \).

 [with more alg. top., the same holds for continuous maps \(B^n \to B^n \forall n \)].

 Proof #1 ("by hand"): assume \(f: B^2 \to B^2 \) continuous, \(f(x) \neq x \ \forall x \in B^2 \).

 Then define \(h: B^2 \to S^1 \) by mapping each \(p \in B^2 \) to the point where the ray from \(f(p) \) to \(p \) hits \(\partial B^2 = S^1 \).

 (Formula: \(h(p) = p + t(p - f(p)) \) where \(t > 0 \) s.t. \(\| h(p) \|^2 = 1 \). can solve by quadratic formula, so \(t \) does depend continuously on \(p \).)

 This gives a continuous map \(h: B^2 \to S^1 \), moreover if \(p \in S^1 \) then \(h(p) = p \), so we get a retraction \(B^2 \to S^1 \). Contradiction.

 \[\square \]

 We'll give a more conceptual version of this argument, after some useful lemmas...
Lemma: Let \(h: S^1 \to X \) be continuous, then the following are equivalent:

1. \(h \) is nullhomotopic
2. \(h \) extends to a continuous map \(k: B^2 \to X \) \((k|_{\partial B^2} = h)\).
3. \(h_*: \pi_1(S^1) \to \pi_1(X) \) is the trivial homomorphism.

Proof:

1) \(\Rightarrow\) 2): Let \(H: S^1 \times I \to X \) be a homotopy between \(h \) and a constant map.
Define a map \(\Pi: S^1 \times I \to B^2 \) by \(\Pi(x,t) = (1-t)x \):

\[
\begin{array}{c}
\text{Disk} \\
\longrightarrow \\
\text{Circle}
\end{array}
\]

Can check \(\Pi \) is a quotient map, collapsing \(S^1 \times \{1\} \) to a point (the origin), and a homeomorphism on \(S^1 \times [0,1) \to B^2 \setminus \{0\} \).

Since \(H: S^1 \times I \to X \) is constant on \(S^1 \times \{1\} \), it induces a continuous map \((S^1 \times I)/\sim \to X \), i.e. \(\exists k: B^2 \to X \) s.t. \(H = k \circ \Pi \). \(S^1 \times I \to B^2 \to X \)

Moreover, \(\Pi \) maps \(S^1 \times \{0\} \) to \(S^1 \times \{0\} \), so \(k|_{S^1 \times \{0\}} \) agrees with \(h|_{S^1 \times \{0\}} = h \).

2) \(\Rightarrow\) 3): if \(h|_{S^1} \) is null, then we may write \(h = k \circ i \) where \(i: S^1 \to B^2 \) is the inclusion.

By functoriality of \(\pi_1 \), \(h_* = k_* \circ i_* : \pi_1(S^1) \to \pi_1(B^2) \to \pi_1(X) \)

But \(\pi_1(B^2) = \{1\} \), so \(k_* \) is trivial and so is \(h_* \).

3) \(\Rightarrow\) 1): assume \(h_*: \pi_1(S^1, b_0) \to \pi_1(X, x_0) \) is trivial.

Let \(f: I \to S^1 \) be the loop \(f(s) = (\cos 2\pi s, \sin 2\pi s) \), representing the generator of \(\pi_1(S^1) \).

This is also a quotient map \([0,1]/\sim \) \(S^1 \).

Then \(g = h \circ f: I \to X \) is a loop in \(X \), representing \(h_*([f]) = 1 \).

Thus \(\exists \) path homotopy \(G: I \times I \to X \) from \(g \) to the constant path at \(x_0 \).

Now, \(F: I \times I \to S^1 \times I \) is a quotient map identifying \((0,t) \sim (1,t)\),

\((s,t) \to (f(s),t) \)

and since \(G(\cdot, t) = G(1,t) = x_0 \) \(\forall t \), \(G: I \times I \to X \) induce a continuous map

\(H: S^1 \times I \to X \) s.t. \(H \circ F = G \).

\(H \) is now a homotopy between \(H|_{S^1 \times 0} = h \) and \(H|_{S^1 \times \{1\}} \) a constant map at \(x_0 \).
The Borsuk-Ulam Theorem for S^2: (§57)

If $f : S^2 \to \mathbb{R}^2$ is continuous, then there exists a pair of antipodal points $x, -x \in S^2$ such that $f(x) = f(-x)$.

(similarly for $f : S^n \to \mathbb{R}^n$ in general; case $n=1$ follows from intermediate value theorem, case $n \geq 3$ requires more algebraic topology...).

Next time!