What is topology? Unlike geometry, which concerns quantitative information about space (distance, volume, ...), topology concerns itself with qualitative properties that are invariant under continuous deformation.

Eg: is it connected? (a single piece)

- simply connected?

\[\bigcirc \text{ vs. } \bigcirc \]

\[\text{punctured torus } \sim \quad \bigcirc \]

Eg: how/why is a Möbius band different from a regular band?

\[\bigcirc \text{ vs. } \bigcirc \]

[orientability? boundary?]

Algebraic topology associates invariants to topological spaces that help tell them apart. We'll get a taste of it in the 2nd part of the course, focusing on the fundamental group.

But first need the language of point-set topology:

- topological spaces, open & closed sets,
- compactness, connectedness.
Topological spaces = sets equipped with data that lets us talk about continuity — notion of "nearness" so we can talk about limits etc.

Example: extreme value theorem says: \(f: [a,b] \to \mathbb{R} \) continuous \(\Rightarrow f \) achieves its max and min at some points of \([a,b]\).

This is in fact true for any continuous \(f: X \to \mathbb{R} \) whenever \(X \) is a compact topological space, and is a special instance of

Theorem: If \(f: X \to Y \) continuous mapping between topological spaces, & \(X \) compact, then \(f(X) \) is compact.

Since the general notion of topological space is quite abstract, let's start with a more familiar class of examples: **METRIC SPACES**

Definition: A metric space \((X,d)\) is a set \(X\) together with a distance function \(d: X \times X \to \mathbb{R}_{\geq 0}\) s.t.

1. For \(p, q \in X\), \(d(p, q) = 0 \iff p = q\)
2. \(d(p, q) = d(q, p)\)
3. For \(p, q, r \in X\), \(d(p, q) \leq d(p, r) + d(r, q)\) (triangle inequality)

Example: \(X = \mathbb{R}^n\) with Euclidean distance \(d(x, y) = \left(\sum_{i=1}^{n} (y_i - x_i)^2 \right)^{1/2}\).

If \(Y \subseteq \mathbb{R}^n\) then \((Y, d_{|Y})\) is a metric space ("induced metric").

Example: different metrics on \(\mathbb{R}^n\):

\[
\begin{align*}
 d_1(x, y) &= \sum_{i=1}^{n} |y_i - x_i| \\
 d_\infty(x, y) &= \max \{ |y_i - x_i| \}
\end{align*}
\]

Exercises: show \((\mathbb{R}^n, d_1)\) & \((\mathbb{R}^n, d_\infty)\) are metric spaces.

Open sets:

Definition: \((X, d)\) metric space, \(p \in X\), \(r > 0\) : the open ball of radius \(r\) around \(p\) is \(B_r(p) = \{ q \in X \mid d(p, q) < r \}\) (or neighborhood).

\(U \subseteq X\) is open if \(\forall p \in U\), \(\exists r > 0\) s.t. \(B_r(p) \subseteq U\).

Facts: open balls are open; so are arbitrary unions & finite intersections of open sets. (Homework)
Closed sets & limits:

Def: A sequence \(p_1, p_2, \ldots \) in \(X \) converges to a limit \(p \in X \) if \(\forall \epsilon > 0 \ \exists N \in \mathbb{N} \) such that \(\forall n \geq N, \ d(p_n, p) < \epsilon \).

(unique if it exists).

Def: A sequence \(p_1, p_2, \ldots \) in \(X \) is Cauchy if \(\forall \epsilon > 0 \ \exists N \in \mathbb{N} \) such that \(\forall m, n \geq N, \ d(p_m, p_n) < \epsilon \).

Exercise: if a sequence converges then it is Cauchy, but not necessarily vice-versa.

A metric space is complete if every Cauchy sequence converges.

Ex: \(\mathbb{R} \) is complete, but \(\mathbb{Q} \) (with induced metric) isn’t complete

Def: \(Z \subseteq X \) is closed if its complement \(X \setminus Z \) is open.

Most subsets of \(X \) are neither open nor closed!!

\(\emptyset \) and \(X \) are both open and closed!

Prop. \(Z \subseteq X \) is closed if and only if:

\(\forall \) sequence \(\{p_n\} \) in \(Z \) which converges to a limit \(p \in X \), then \(p \in Z \).

\(\triangle \Rightarrow \) true in all topological spaces, but \(\Leftarrow \) only holds in sufficiently nice ones (such as metric spaces)

Proof: if \(Z \) is not closed then \(X \setminus Z \) not open, i.e. \(\exists p \in X \setminus Z \) st. \(\forall r > 0, \ B_r(p) \nsubseteq X \setminus Z \)

For this point \(p \), \(\forall n \geq 1, \ \exists p_n \in Z \) with \(d(p_n, p) < \frac{1}{n} \).

This gives a sequence \(p_n \to p \), \(p_n \in Z \), \(p \notin Z \).

\(\cdot \) Conversely, if \(\exists p_n \in Z \), \(p \in X \setminus Z \), \(p_n \to p \), then

\(\forall r > 0 \ \exists N \in \mathbb{N} \) such that \(\forall n \geq N, \ d(p_n, p) < r \).

So \(N_r(p) \) contains points of \(Z \), hence \(N_r(p) \nsubseteq X \setminus Z \).

Hence \(X \setminus Z \) isn’t open, i.e. \(Z \) isn’t closed.

Continuity: **Def:** \((X, d_X), (Y, d_Y)\) metric spaces. \(f : X \to Y \) is continuous if

\[\forall p \in X, \ \forall \epsilon > 0, \ \exists \delta > 0 \text{ st. } d_X(p, x) < \delta \Rightarrow d_Y(f(p), f(x)) < \epsilon. \]

\(\exists \) 8-ball \(p \) \(f \) \(\Rightarrow \) 8-ball given \(\epsilon \)-ball.
Theorem: \(f: X \to Y \) is continuous iff \(\forall U \subset Y \text{ open}, \ f^{-1}(U) \subset X \text{ is open.} \)

Proof. Assume \(f \) continuous, let \(U \subset Y \) open, let \(p \in f^{-1}(U) \), i.e. \(f(p) \in U \).

Want: \(\exists \delta > 0 \text{ st. } B_\delta(p) \subset f^{-1}(U). \)

Know: \(\exists \epsilon > 0 \text{ st. } B_\epsilon(f(p)) \subset U. \) (since \(U \) open).

By continuity, \(\exists \delta > 0 \text{ st. } d(p,x) < \delta \Rightarrow f(x) \in B_\epsilon(f(p)) \subset U. \)

Hence \(B_\delta(p) \subset f^{-1}(U). \) So \(f^{-1}(U) \) is open.

Conversely, assume \(U \subset Y \) open \(\Rightarrow f^{-1}(U) \) open.

Fix \(p \in X, \epsilon > 0. \) \(B_\epsilon(f(p)) \) is open in \(Y \), so \(f^{-1}(B_\epsilon(f(p))) \exists \delta > 0 \text{ st. } B_\delta(p) \subset f^{-1}(B_\epsilon(f(p))). \)

This means \(d(p,x) < \delta \Rightarrow x \in B_{\epsilon}(f(p)) \Rightarrow f(x) \in B_{\epsilon}(f(p)) \).

* Our goal will be to reformulate / generalize all this in the context of **topological spaces**, i.e. sets equipped with a topology which may or may not come from a metric.

Def. A topology \(T \) on a set \(X \) is collection of subsets of \(X \), which we'll declare to be the open sets in \(X \). Needs to satisfy axioms:

- \(\emptyset \in T, X \in T \)
- any union of elements of \(T \) is in \(T \)
- the intersection of finitely many elements of \(T \) is in \(T \).

Why bother? One answer: many natural topologies do not come from a metric!

E.g., in analysis:

- *on space of (bounded) functions \(f: X \to \mathbb{R}, \)
 - uniform convergence topology *comes* from a metric \((d(f,g) = \sup_x |f(x) - g(x)|) \)
 - but pointwise convergence \(f_n \to f \iff \forall x \in X, f_n(x) \to f(x) \) doesn't. ("product topology")
- \(C^\infty \) topology on smooth functions \(\mathbb{R} \to \mathbb{R} \) doesn't come from a metric either.