Math 112 Homework 1 Solutions

Problem 1.

By contradiction: take \(r \) rational, \(x \) irrational, and assume \(y = r + x \in \mathbb{Q} \). Since \(y \in \mathbb{Q} \), \(r \in \mathbb{Q} \) and \(\mathbb{Q} \) is a field, \(x = y - r \in \mathbb{Q} \); contradiction, hence \(y \) is irrational.

Similarly, take \(r \neq 0 \) rational, \(x \) irrational, and assume \(y = rx \in \mathbb{Q} \). Since \(y \in \mathbb{Q} \), \(r \in \mathbb{Q} \), \(r \) is non-zero and \(\mathbb{Q} \) is a field, \(x = y/r \in \mathbb{Q} \); contradiction, hence \(y \) is irrational.

Problem 2.

Since \(A \) is bounded below, \(-A \) is bounded above (because if \(x \) is a lower bound of \(A \), i.e. \(x \leq y \) \(\forall y \in A \), then \(-x \geq -y \) \(\forall y \in A \), so \(-x \) is an upper bound of \(-A \)). Since \(A \) is not empty, \(-A \) is not empty either. Therefore, by the least upper bound property of \(\mathbb{R} \), the set \(-A \) admits a least upper bound \(\alpha = \text{sup}(-A) \). We must show that \(\inf(A) = -\alpha \).

First we show that \(-\alpha \) is a lower bound of \(A \). Let \(x \) be any element of \(A \): then \(-x \in -A \), so \(-x \leq \alpha \) (\(\alpha \) is an upper bound of \(-A \)). Multiplying by \(-1\) we get \(x \geq -\alpha \); since this holds for any \(x \in A \), we get that \(-\alpha \) is a lower bound of \(A \).

Next we show that \(-\alpha \) is the greatest lower bound of \(A \). Let \(y \) be any lower bound of \(A \): then \(\forall x \in A \), \(x \geq y \), so \(-x \leq -y \). Since all elements of \(-A \) are of the form \(-x \) where \(x \in A \), we get that \(-y \) is an upper bound of \(-A \). Therefore, \(-y \geq \alpha \) (because \(\alpha \) is the least upper bound). Multiplying by \(-1\) again we get \(y \leq -\alpha \), so \(-\alpha \) is the greatest lower bound of \(A \).

Problem 3.

We must check that the two axioms of an order relation (§1.5 of Rudin) hold:

(i) Let \(z = a + bi \), \(w = c + di \in \mathbb{C} \). We must show that exactly one of the three properties \(z \prec w \), \(z = w \) and \(w \prec z \) holds. There are three cases to consider: if \(a < c \), then \(z \prec w \) (while \(z \neq w \) and \(w \not< z \)); if \(a > c \), then \(w < z \) (while \(z \neq w \) and \(z \not< w \)); the last case is \(a = c \). When \(a = c \), there are again three subcases: if \(b < d \) then \(z < w \) (while \(z \neq w \) and \(w \not< z \)); if \(b > d \) then \(w < z \) (while \(z \neq w \) and \(z \not< w \)); if \(b = d \) then \(w = z \) (while \(z \not< w \) and \(w \not< z \)).

(ii) Let \(z = a + bi \), \(w = c + di \), \(u = e + fi \in \mathbb{C} \). Assume that \(z \prec w \) and \(w \prec u \). We must show that \(z \prec u \). We know that \(a \leq c \) and \(c \leq e \), therefore \(a \leq e \). If \(a < e \) then by definition \(z \prec u \).

The remaining case to consider is when \(a = e \), where \(c \) is also necessarily equal to \(a \) and \(e \); then we must have \(b < d \) and \(d < f \), so \(b < f \), and therefore \(z \prec u \).

This ordered set does not have the least-upper-bound property: for example consider \(A = \{a + bi \mid a < 0\} \): then \(c + di \) is an upper bound of \(A \) if and only if \(c \geq 0 \). However, given any upper bound \(w = c + di \) of \(A \), then \(w' = c + (d - 1)i \) is also an upper bound of \(A \) (since \(c \geq 0 \)), and \(w' < w \) (since \(d - 1 < d \)). So there is no least upper bound of \(A \).

Problem 4.

(a) Since \(\mathbb{Q}(\sqrt{2}) \) is a subset of \(\mathbb{R} \), the usual commutativity, associativity and distributivity properties are clearly satisfied. Moreover it is obvious that 0 and 1 belong to \(\mathbb{Q}(\sqrt{2}) \); therefore it is enough to check that the usual operations are well-defined in \(\mathbb{Q}(\sqrt{2}) \) (axioms (A1), (A5), (M1), (M5) of Rudin §1.12).
Let \(x = a + b\sqrt{2} \) and \(y = c + d\sqrt{2} \) be two elements of \(\mathbb{Q}(\sqrt{2}) \). Then

\[
x + y = (a + c) + (b + d)\sqrt{2}, \quad xy = (ac + 2bd) + (ad + bc)\sqrt{2}, \quad -x = (-a) + (-b)\sqrt{2}
\]

are clearly elements of \(\mathbb{Q}(\sqrt{2}) \).

Moreover, if \(x \neq 0 \), i.e. if \(a \) and \(b \) are not simultaneously equal to 0, then \(a^2 - 2b^2 \neq 0 \) because there is no rational number \(r \in \mathbb{Q} \) with the property that \(r^2 = 2 \); therefore

\[
x^{-1} = \frac{1}{a + b\sqrt{2}} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2} \sqrt{2} \in \mathbb{Q}(\sqrt{2}).
\]

Therefore \(\mathbb{Q}(\sqrt{2}) \) with the usual operations is a subfield of \(\mathbb{R} \).

(b) By contradiction: assume that \(\sqrt{3} \in \mathbb{Q}(\sqrt{2}) \), i.e. there exist \(a, b \in \mathbb{Q} \) such that \(\sqrt{3} = a + b\sqrt{2} \). Then \((a + b\sqrt{2})^2 = (a^2 + 2b^2) + 2ab\sqrt{2} \), so one gets

\[
3 - a^2 - 2b^2 = 2ab\sqrt{2}.
\]

Since \(\sqrt{2} \notin \mathbb{Q} \) the only possibility is that \(2ab = 0 \), which implies that either \(a = 0 \) or \(b = 0 \). If \(a = 0 \) then one gets \(\sqrt{3} = b\sqrt{2} \), i.e. \(\sqrt{6} = 2b \in \mathbb{Q} \), which is a contradiction. If \(b = 0 \) then one gets \(\sqrt{3} = a \in \mathbb{Q} \), which is again a contradiction. Therefore \(\sqrt{3} \notin \mathbb{Q}(\sqrt{2}) \).

(We omit the proof that \(\sqrt{3} \) and \(\sqrt{6} \) are irrational, which is similar to that for \(\sqrt{2} \) given in Rudin).

Problem 5.

Recall that \(|z|^2 = z\bar{z} \). Then:

\[
|1 + z_1|^2 + |1 + z_2|^2 + \cdots + |1 + z_n|^2
= (1 + z_1)(1 + \bar{z}_1) + (1 + z_2)(1 + \bar{z}_2) + \cdots + (1 + z_n)(1 + \bar{z}_n)
= (1 + z_1 + \bar{z}_1 + |z_1|^2) + (1 + z_2 + \bar{z}_2 + |z_2|^2) + \cdots + (1 + z_n + \bar{z}_n + |z_n|^2)
= n + (|z_1|^2 + |z_2|^2 + \cdots + |z_n|^2) + (\bar{z}_1 + \bar{z}_2 + \cdots + \bar{z}_n).
\]

Since \(z_1 + z_2 + \cdots + z_n = 0 \) one also has that \(\bar{z}_1 + \bar{z}_2 + \cdots + \bar{z}_n = 0 \). In addition \(|z_1| = |z_2| = \cdots = |z_n| = 1 \), so the sum above is equal to \(2n \).

Problem 6.

For \(\mathbf{x} = 0 \) the statement clearly holds (any non-zero \(\mathbf{y} \in \mathbb{R}^k \) satisfies \(\mathbf{x} \cdot \mathbf{y} = 0 \)). So we can restrict ourselves to the case where \(\mathbf{x} \neq 0 \), i.e. \(\mathbf{x} = (x_1, \ldots, x_k) \) where at least one of the \(x_i \) is non-zero. By permuting the components if necessary, we can assume without loss of generality that \(x_1 \neq 0 \).

Then let \(\mathbf{y} = (-x_2, x_1, 0, \ldots, 0) \in \mathbb{R}^k \): we have that \(\mathbf{y} \neq 0 \) (its second component is non-zero), and \(\mathbf{x} \cdot \mathbf{y} = -x_1x_2 + x_2x_1 = 0 \).

(Or more geometrically: for \(\mathbf{x} \neq 0 \), the set \(\{ \mathbf{y} \in \mathbb{R}^k, \mathbf{x} \cdot \mathbf{y} = 0 \} \) is a hyperplane, which always contains non-zero elements when \(k \geq 2 \)).

For \(k = 1 \) this is no longer true: if \(x \) is non-zero, then the equation \(x \cdot y = 0 \) admits \(y = 0 \) as only solution.
Problem 7.
For every positive integer \(n \), let \(M_n \) be the set whose elements are all the subsets of the finite set \(\{-n, \ldots, n\} \). The set \(M_n \) is finite (in fact it has \(2^{2n+1} \) elements). However, every finite subset of \(\mathbb{Z} \) is bounded and therefore contained in \(\{-n, \ldots, n\} \) for some integer \(n \) (of course \(n \) depends on the chosen subset). So every element of \(M \) belongs to \(M_n \) for some \(n \), and therefore \(M = \bigcup_{n=1}^{\infty} M_n \).

Since it is a countable union of finite sets, \(M \) is at most countable; since \(M \) is clearly infinite, it is countable.

Alternative solution: for every integer \(n \geq 0 \), let \(A_n \) be the set of all subsets of \(\mathbb{Z} \) containing exactly \(n \) elements. The set \(A_0 \) admits the empty subset as its only element and is therefore finite. If \(n \geq 1 \), then to an element \(\{x_1, \ldots, x_n\} \) of \(A_n \) we can associate the element \((x_1, \ldots, x_n) \) of \(\mathbb{Z}^n \) (the set of \(n \)-tuples of integers), where the \(x_i \)'s are ordered so that \(x_1 < x_2 < \cdots < x_n \). This defines a 1-1 mapping of \(A_n \) into \(\mathbb{Z}^n \). However \(\mathbb{Z}^n \) is countable (see Rudin §2.13), so \(A_n \) which is equivalent to an infinite subset of \(\mathbb{Z}^n \) is also countable. We conclude that \(M = \bigcup_{n=0}^{\infty} A_n \) is also countable.